Estimation - Estimation Ponctuelle

Aubin SIONVILLE

Télécom St Etienne 2024-2025

Définitions

Estimation ponctuelle

Estimation scalaire à partir des réalisations des X_n : $\widehat{\theta} = f(x_1, ..., x_N)$

Estimateur associé

Estimateur associé : la v.a. $\widehat{\Theta} = f(X_1, ..., X_N)$

Estimateur convergent / consistant

Estimateur convergent : proche de θ^* (convergence en proba) i.e. $\forall \varepsilon > 0$, $\mathbb{P}\left(\left|\widehat{\Theta} - \theta^*\right| > \varepsilon\right) \xrightarrow[N \to \infty]{} 0$

Biais, variance et EQM

Biais

 $b_{\widehat{\Theta}} = \mathbb{E}(\widehat{\Theta}) - \theta^*$

Variance (précision)

MSE / EQM

$$\left| \sigma_{\widehat{\Theta}}^2 = \operatorname{Var} \left[\widehat{\Theta} \right] = \mathbb{E} \left[\left| \widehat{\Theta} - \mathbb{E} \left[\widehat{\Theta} \right] \right|^2 \right] \right| \qquad \left| \operatorname{eqm}_{\widehat{\Theta}} = \mathbb{E} \left[\left| \widehat{\Theta} - \theta^* \right|^2 \right] = \sigma_{\widehat{\Theta}}^2 + b_{\widehat{\Theta}}^2$$

Estimateur biaisé

Estimateur biaisé ou non

 $b_{\widehat{\Theta}} = 0$ \iff $\widehat{\Theta}$ non biaisé

Comportement asymptotique

 $\lim_{N \to \infty} b_{\widehat{\Theta}} = 0 \iff$ $\widehat{\Theta}$ asymptotiquement non biaisé

Estimateur convergent/consistant

$$\begin{cases} \lim_{N \to \infty} b_{\widehat{\Theta}} = 0 \\ \lim_{N \to \infty} \sigma_{\widehat{\Theta}}^2 = 0 \end{cases} \implies \widehat{\Theta} \text{ convergent}$$

Estimateur efficace

 $\widehat{\Theta}_1$ plus efficace que $\widehat{\Theta}_2 \iff \operatorname{Var}[\widehat{\Theta}_1] < \operatorname{Var}[\widehat{\Theta}_2]$

Estimateur asymptotiquement efficace et normal

BANE: Best Asymptotically Normal Estimator

Un estimateur
$$\widehat{\Theta}$$
 de θ^* est dit BANE si :
$$\lim_{N \to \infty} \mathcal{L}(\widehat{\Theta} - \theta^*) = \mathcal{N}(0, \mathbf{I}(\theta)^{-1})$$

$$\underline{\text{Si }\widehat{\Theta}} \text{ est obtenu par un } N - \text{\'e}\text{chantillon } \mathbf{X} = (X_1, ..., X_N), \widehat{\Theta} = f(\mathbf{X})$$
On note $\mathcal{L}\left(\sqrt{N}\left(f(\mathbf{X}) - \theta^*\right)\right) \xrightarrow[N \to \infty]{} \mathcal{N}\left(0, \mathbf{M}(\theta)^{-1}\right)$

Bornes de Cramer-Rao

Définition

Si
$$\widehat{\Theta}$$
 est un estimateur sans biais de θ^* telle que $\forall \theta, \mathbb{E}\left[\frac{\partial \ln f_{\mathbf{X}}(\mathbf{X})}{\partial \theta}\right] = 0$, alors : $\operatorname{Var}\left[\widehat{\Theta}\right] \geq \frac{1}{I(\theta^*)}$ où $I(\theta^*) = -\mathbb{E}\left[\frac{\partial^2 \ln f_{\mathbf{X}}(\mathbf{X})}{\partial \theta^2}\right]$

Cas scalaire

MVUE: Minimum Variance Unbiased Estimator

Si
$$Var[\widehat{\Theta}] = \{Borne de Cramer-Rao\},$$

alors $\widehat{\Theta}$ est un MVUE
et on ne peut pas faire mieux